Tap the blue circles to see an explanation.
$$ \begin{aligned}(6-8i)\cdot(4+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24+12i-32i-16i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-16i^2-20i+24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{6-8i}\right) $ by each term in $ \left( 4+2i\right) $. $$ \left( \color{blue}{6-8i}\right) \cdot \left( 4+2i\right) = 24+12i-32i-16i^2 $$ |
② | Combine like terms: $$ 24+ \color{blue}{12i} \color{blue}{-32i} -16i^2 = -16i^2 \color{blue}{-20i} +24 $$ |