Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{6-(-4)}{-8-12}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10}{-8-12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10}{-20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{10}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}- \, \frac{ 10 : \color{orangered}{ 10 } }{ 20 : \color{orangered}{ 10 }} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{1}{2}\end{aligned} $$ | |
① | $$ \color{blue}{6} + \color{blue}{4} = \color{blue}{10} $$ |
② | $$ \color{blue}{-8} \color{blue}{-12} = \color{blue}{-20} $$ |
③ | Place minus sign in front of the fraction. |
④ | Divide both the top and bottom numbers by $ \color{orangered}{ 10 } $. |