Tap the blue circles to see an explanation.
$$ \begin{aligned}(53+56i)(\frac{43}{145}-\frac{81}{145}i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(53+56i)(\frac{43}{145}-\frac{81i}{145}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(53+56i)\frac{-81i+43}{145} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4536i^2-1885i+2279}{145} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{4536-1885i+2279}{145} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-1885i+6815}{145}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{81}{145} \cdot i & \xlongequal{\text{Step 1}} \frac{81}{145} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 81 \cdot i }{ 145 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 81i }{ 145 } \end{aligned} $$ |
② | To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{43}{145} - \frac{81i}{145} & = \frac{43}{\color{blue}{145}} - \frac{81i}{\color{blue}{145}} =\frac{ 43 - 81i }{ \color{blue}{ 145 }} = \\[1ex] &= \frac{-81i+43}{145} \end{aligned} $$ |
③ | Step 1: Write $ 53+56i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 53+56i \cdot \frac{-81i+43}{145} & \xlongequal{\text{Step 1}} \frac{53+56i}{\color{red}{1}} \cdot \frac{-81i+43}{145} \xlongequal{\text{Step 2}} \frac{ \left( 53+56i \right) \cdot \left( -81i+43 \right) }{ 1 \cdot 145 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -4293i+2279-4536i^2+2408i }{ 145 } = \frac{-4536i^2-1885i+2279}{145} \end{aligned} $$ |
④ | $$ -4536i^2 = -4536 \cdot (-1) = 4536 $$ |
⑤ | $$ \color{blue}{4536} -1885i+ \color{blue}{2279} = -1885i+ \color{blue}{6815} $$ |