Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4sin(0.196(xcos\cdot0.24-ysin\cdot0.24)-1.5)+25-xsin\cdot0.24}{c}os\cdot0.24& \xlongequal{ }\frac{4sin(0.196(0cosx-0insy)-1.5)+25-xsin\cdot0.24}{c}os\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4sin(0cosx+0insy-1.5)+25-xsin\cdot0.24}{c}os\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{0cinos^2x+0i^2n^2s^2y-4ins+25-xsin\cdot0.24}{c}os\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{0cinos^2x+0i^2n^2s^2y-4ins+25-0insx}{c}os\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4inos+25o}{c}s\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-4inos^2+25os}{c}\cdot0.24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{0}{c} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
① | Multiply $ \color{blue}{0} $ by $ \left( 0cosx0insy\right) $ $$ \color{blue}{0} \cdot \left( 0cosx0insy\right) = 0cosx0insy $$ |
② | Multiply $ \color{blue}{4ins} $ by $ \left( 0cosx0insy-1\right) $ $$ \color{blue}{4ins} \cdot \left( 0cosx0insy-1\right) = 0cinos^2x0i^2n^2s^2y-4ins $$ |
③ | Step 1: Write $ o $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{0cinos^2x0i^2n^2s^2y-4ins+250insx}{c} \cdot o & \xlongequal{\text{Step 1}} \frac{0cinos^2x0i^2n^2s^2y-4ins+250insx}{c} \cdot \frac{o}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 0cinos^2x0i^2n^2s^2y-4ins+250insx \right) \cdot o }{ c \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 0cino^2s^2x0i^2n^2os^2y-4inos+25o0inosx }{ c } = \\[1ex] &= \frac{-4inos+25o}{c} \end{aligned} $$ |
④ | Step 1: Write $ s $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-4inos+25o}{c} \cdot s & \xlongequal{\text{Step 1}} \frac{-4inos+25o}{c} \cdot \frac{s}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -4inos+25o \right) \cdot s }{ c \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -4inos^2+25os }{ c } \end{aligned} $$ |
⑤ | Step 1: Write $ 0 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-4inos^2+25os}{c} \cdot 0 & \xlongequal{\text{Step 1}} \frac{-4inos^2+25os}{c} \cdot \frac{0}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -4inos^2+25os \right) \cdot 0 }{ c \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 0inos^20os }{ c } \end{aligned} $$ |