Tap the blue circles to see an explanation.
$$ \begin{aligned}(4+3i)\cdot(6+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24+8i+18i+6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6i^2+26i+24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4+3i}\right) $ by each term in $ \left( 6+2i\right) $. $$ \left( \color{blue}{4+3i}\right) \cdot \left( 6+2i\right) = 24+8i+18i+6i^2 $$ |
② | Combine like terms: $$ 24+ \color{blue}{8i} + \color{blue}{18i} +6i^2 = 6i^2+ \color{blue}{26i} +24 $$ |