Tap the blue circles to see an explanation.
$$ \begin{aligned}(4+3i)\cdot(2-5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8-20i+6i-15i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-15i^2-14i+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4+3i}\right) $ by each term in $ \left( 2-5i\right) $. $$ \left( \color{blue}{4+3i}\right) \cdot \left( 2-5i\right) = 8-20i+6i-15i^2 $$ |
② | Combine like terms: $$ 8 \color{blue}{-20i} + \color{blue}{6i} -15i^2 = -15i^2 \color{blue}{-14i} +8 $$ |