Tap the blue circles to see an explanation.
$$ \begin{aligned}(4-3i)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16-24i+9i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16-24i-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-24i+7\end{aligned} $$ | |
① | Find $ \left(4-3i\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4 } $ and $ B = \color{red}{ 3i }$. $$ \begin{aligned}\left(4-3i\right)^2 = \color{blue}{4^2} -2 \cdot 4 \cdot 3i + \color{red}{\left( 3i \right)^2} = 16-24i+9i^2\end{aligned} $$ |
② | $$ 9i^2 = 9 \cdot (-1) = -9 $$ |
③ | Combine like terms: $$ -24i+ \color{blue}{16} \color{blue}{-9} = -24i+ \color{blue}{7} $$ |