Tap the blue circles to see an explanation.
$$ \begin{aligned}(4-10i)\cdot(4+3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16+12i-40i-30i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-30i^2-28i+16\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4-10i}\right) $ by each term in $ \left( 4+3i\right) $. $$ \left( \color{blue}{4-10i}\right) \cdot \left( 4+3i\right) = 16+12i-40i-30i^2 $$ |
② | Combine like terms: $$ 16+ \color{blue}{12i} \color{blue}{-40i} -30i^2 = -30i^2 \color{blue}{-28i} +16 $$ |