Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{3\cdot(2+34)}-(9\cdot(3+45)+\frac{3+6\cdot(2+3)}{3+46})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{3\cdot(2+34)}-(9\cdot48+\frac{3+6\cdot(2+3)}{3+46}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4}{3\cdot(2+34)}-(432+\frac{3+6\cdot(2+3)}{3+46}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{4}{6+102}-(432+\frac{\frac{3+12+18}{1}}{49}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{4}{108}-(432+\frac{\frac{33}{1}}{49}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{ 4 : \color{orangered}{ 4 } }{ 108 : \color{orangered}{ 4 }} - 432+\frac{33}{49} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{1}{27}-\frac{21201}{49} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}-\frac{572378}{1323}\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{3} + \color{blue}{45} = \color{blue}{48} $$ |
② | $$ 9 \cdot 48 = 432 $$ |
③ | Multiply $ \color{blue}{3} $ by $ \left( 2+34\right) $ $$ \color{blue}{3} \cdot \left( 2+34\right) = 6+102 $$ |
④ | $$ 3+6\cdot(2+3)
= 3 \cdot \color{blue}{\frac{ 1 }{ 1}} + 12+18 \cdot \color{blue}{\frac{ 1 }{ 1}}
= \frac{3+12+18}{1} $$ |
⑤ | $$ \color{blue}{3} + \color{red}{12} + \color{red}{18} = \color{red}{33} $$ |
⑥ | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |
⑦ | Remove 1 from denominator. |
⑧ | Step 1: Write $ 432 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add fractions they must have the same denominator. |
⑨ | To subtract fractions they must have the same denominator. |