Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x^3+6x+14-(2x^3+4x^2-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^3+6x+14-2x^3-4x^2+x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3-4x^2+7x+14\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^3+4x^2-x \right) = -2x^3-4x^2+x $$ |
| ② | Combine like terms: $$ \color{blue}{3x^3} + \color{red}{6x} +14 \color{blue}{-2x^3} -4x^2+ \color{red}{x} = \color{blue}{x^3} -4x^2+ \color{red}{7x} +14 $$ |