Tap the blue circles to see an explanation.
$$ \begin{aligned}(3ix+9)(ix+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3i^2x^2+9ix+9ix+27 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3i^2x^2+18ix+27\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3ix+9}\right) $ by each term in $ \left( ix+3\right) $. $$ \left( \color{blue}{3ix+9}\right) \cdot \left( ix+3\right) = 3i^2x^2+9ix+9ix+27 $$ |
② | Combine like terms: $$ 3i^2x^2+ \color{blue}{9ix} + \color{blue}{9ix} +27 = 3i^2x^2+ \color{blue}{18ix} +27 $$ |