Tap the blue circles to see an explanation.
$$ \begin{aligned}3i(2i)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3i\cdot4i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3i\cdot(-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-12i\end{aligned} $$ | |
① | $$ \left( 2i \right)^2 = 2^2i^2 = 4i^2 $$ |
② | $$ 4i^2 = 4 \cdot (-1) = -4 $$ |
③ | $$ 3 i \cdot -4 = -12 i $$ |