Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{30.07-10.94i}{(6-8i)\cdot(4+2i)}+\frac{20}{-10+24i}& \xlongequal{ }\frac{30.07-10i}{(6-8i)\cdot(4+2i)}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{30.07-10i}{24+12i-32i-16i^2}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30.07-10i}{-16i^2-20i+24}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{30.07-10i}{16-20i+24}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{30.07-10i}{-20i+40}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{7+i}{10}+\frac{20}{-10+24i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{24i^2+158i+130}{240i-100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-24+158i+130}{240i-100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{158i+106}{240i-100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{683-1031i}{1690}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{6-8i}\right) $ by each term in $ \left( 4+2i\right) $. $$ \left( \color{blue}{6-8i}\right) \cdot \left( 4+2i\right) = 24+12i-32i-16i^2 $$ |
② | Combine like terms: $$ 24+ \color{blue}{12i} \color{blue}{-32i} -16i^2 = -16i^2 \color{blue}{-20i} +24 $$ |
③ | $$ -16i^2 = -16 \cdot (-1) = 16 $$ |
④ | Combine like terms: $$ \color{blue}{16} -20i+ \color{blue}{24} = -20i+ \color{blue}{40} $$ |
⑤ | Divide $ \, 30-10i \, $ by $ \, 40-20i \, $ to get $\,\, \dfrac{7+i}{10} $. ( view steps ) |
⑥ | To add raitonal expressions, both fractions must have the same denominator. |
⑦ | $$ 24i^2 = 24 \cdot (-1) = -24 $$ |
⑧ | $$ \color{blue}{-24} +158i+ \color{blue}{130} = 158i+ \color{blue}{106} $$ |
⑨ | Divide $ \, 106+158i \, $ by $ \, -100+240i \, $ to get $\,\, \dfrac{683-1031i}{1690} $. ( view steps ) |