Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3-i}{2+1}+(1+i)\cdot(1-i)\cdot(3-4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3-i}{3}+(1+i)\cdot(1-i)\cdot(3-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3-i}{3}+(1-i+i-i^2)\cdot(3-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3-i}{3}+(-i^2+1)\cdot(3-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3-i}{3}+(1+1)\cdot(3-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{3-i}{3}+2\cdot(3-4i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{3-i}{3}+6-8i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-25i+21}{3}\end{aligned} $$ | |
① | $$ \color{blue}{2} + \color{blue}{1} = \color{blue}{3} $$ |
② | Multiply each term of $ \left( \color{blue}{1+i}\right) $ by each term in $ \left( 1-i\right) $. $$ \left( \color{blue}{1+i}\right) \cdot \left( 1-i\right) = 1 -\cancel{i}+ \cancel{i}-i^2 $$ |
③ | Combine like terms: $$ 1 \, \color{blue}{ -\cancel{i}} \,+ \, \color{blue}{ \cancel{i}} \,-i^2 = -i^2+1 $$ |
④ | $$ -i^2 = -(-1) = 1 $$ |
⑤ | Combine like terms: $$ \color{blue}{1} + \color{blue}{1} = \color{blue}{2} $$ |
⑥ | Multiply $ \color{blue}{2} $ by $ \left( 3-4i\right) $ $$ \color{blue}{2} \cdot \left( 3-4i\right) = 6-8i $$ |
⑦ | Step 1: Write $ 6-8i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |