Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x-1)(3x^2+x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+2x^2-10x-3x^2-x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3-x^2-11x+5\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x-1}\right) $ by each term in $ \left( 3x^2+x-5\right) $. $$ \left( \color{blue}{2x-1}\right) \cdot \left( 3x^2+x-5\right) = 6x^3+2x^2-10x-3x^2-x+5 $$ |
② | Combine like terms: $$ 6x^3+ \color{blue}{2x^2} \color{red}{-10x} \color{blue}{-3x^2} \color{red}{-x} +5 = 6x^3 \color{blue}{-x^2} \color{red}{-11x} +5 $$ |