Tap the blue circles to see an explanation.
$$ \begin{aligned}2x^2-3x^4-6x-(2x^2-3x^4+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-3x^4-6x-2x^2+3x^4-8 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{2x^2} -\cancel{3x^4}-6x -\cancel{2x^2}+ \cancel{3x^4}-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6x-8\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^2-3x^4+8 \right) = -2x^2+3x^4-8 $$ |
② | Combine like terms: $$ \, \color{blue}{ \cancel{2x^2}} \, \, \color{green}{ -\cancel{3x^4}} \,-6x \, \color{blue}{ -\cancel{2x^2}} \,+ \, \color{green}{ \cancel{3x^4}} \,-8 = -6x-8 $$ |