Tap the blue circles to see an explanation.
$$ \begin{aligned}(2t^2+5i)(2t^2-5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4t^4-10it^2+10it^2-25i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }4t^4 -\cancel{10it^2}+ \cancel{10it^2}-25i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4t^4-25i^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2t^2+5i}\right) $ by each term in $ \left( 2t^2-5i\right) $. $$ \left( \color{blue}{2t^2+5i}\right) \cdot \left( 2t^2-5i\right) = 4t^4 -\cancel{10it^2}+ \cancel{10it^2}-25i^2 $$ |
② | Combine like terms: $$ 4t^4 \, \color{blue}{ -\cancel{10it^2}} \,+ \, \color{blue}{ \cancel{10it^2}} \,-25i^2 = 4t^4-25i^2 $$ |