Tap the blue circles to see an explanation.
$$ \begin{aligned}(2+i)^2\frac{3-i}{2}-3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4+4i+i^2)\frac{3-i}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4+4i-1)\frac{3-i}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(4i+3)\frac{3-i}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-4i^2+9i+9}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{4+9i+9}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{9i+13}{2}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{3i+13}{2}\end{aligned} $$ | |
① | Find $ \left(2+i\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2 } $ and $ B = \color{red}{ i }$. $$ \begin{aligned}\left(2+i\right)^2 = \color{blue}{2^2} +2 \cdot 2 \cdot i + \color{red}{i^2} = 4+4i+i^2\end{aligned} $$ |
② | $$ i^2 = -1 $$ |
③ | Combine like terms: $$ \color{blue}{4} +4i \color{blue}{-1} = 4i+ \color{blue}{3} $$ |
④ | Step 1: Write $ 4i+3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4i+3 \cdot \frac{3-i}{2} & \xlongequal{\text{Step 1}} \frac{4i+3}{\color{red}{1}} \cdot \frac{3-i}{2} \xlongequal{\text{Step 2}} \frac{ \left( 4i+3 \right) \cdot \left( 3-i \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12i-4i^2+9-3i }{ 2 } = \frac{-4i^2+9i+9}{2} \end{aligned} $$ |
⑤ | $$ -4i^2 = -4 \cdot (-1) = 4 $$ |
⑥ | Combine like terms: $$ \color{blue}{4} +9i+ \color{blue}{9} = 9i+ \color{blue}{13} $$ |
⑦ | Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |