Tap the blue circles to see an explanation.
$$ \begin{aligned}(2+3i)\cdot(4-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8-4i+12i-6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2+8i+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2+3i}\right) $ by each term in $ \left( 4-2i\right) $. $$ \left( \color{blue}{2+3i}\right) \cdot \left( 4-2i\right) = 8-4i+12i-6i^2 $$ |
② | Combine like terms: $$ 8 \color{blue}{-4i} + \color{blue}{12i} -6i^2 = -6i^2+ \color{blue}{8i} +8 $$ |