Tap the blue circles to see an explanation.
$$ \begin{aligned}(2i-1)(i+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2i^2+6i-i-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2i^2+5i-3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2i-1}\right) $ by each term in $ \left( i+3\right) $. $$ \left( \color{blue}{2i-1}\right) \cdot \left( i+3\right) = 2i^2+6i-i-3 $$ |
② | Combine like terms: $$ 2i^2+ \color{blue}{6i} \color{blue}{-i} -3 = 2i^2+ \color{blue}{5i} -3 $$ |