Tap the blue circles to see an explanation.
$$ \begin{aligned}(2-j\cdot9)x\cdot(8-j\cdot16)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-9jx)\cdot(8-j\cdot16) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16x-32jx-72jx+144j^2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}144j^2x-104jx+16x\end{aligned} $$ | |
① | $$ \left( \color{blue}{2-9j}\right) \cdot x = 2x-9jx $$ |
② | Multiply each term of $ \left( \color{blue}{2x-9jx}\right) $ by each term in $ \left( 8-16j\right) $. $$ \left( \color{blue}{2x-9jx}\right) \cdot \left( 8-16j\right) = 16x-32jx-72jx+144j^2x $$ |
③ | Combine like terms: $$ 16x \color{blue}{-32jx} \color{blue}{-72jx} +144j^2x = 144j^2x \color{blue}{-104jx} +16x $$ |