Tap the blue circles to see an explanation.
$$ \begin{aligned}(2-7i)\cdot(2+7i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+14i-14i-49i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }4+ \cancel{14i} -\cancel{14i}-49i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-49i^2+4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2-7i}\right) $ by each term in $ \left( 2+7i\right) $. $$ \left( \color{blue}{2-7i}\right) \cdot \left( 2+7i\right) = 4+ \cancel{14i} -\cancel{14i}-49i^2 $$ |
② | Combine like terms: $$ 4+ \, \color{blue}{ \cancel{14i}} \, \, \color{blue}{ -\cancel{14i}} \,-49i^2 = -49i^2+4 $$ |