Tap the blue circles to see an explanation.
$$ \begin{aligned}(2-3yi)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4-12iy+9i^2y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9i^2y^2-12iy+4\end{aligned} $$ | |
① | Find $ \left(2-3iy\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2 } $ and $ B = \color{red}{ 3iy }$. $$ \begin{aligned}\left(2-3iy\right)^2 = \color{blue}{2^2} -2 \cdot 2 \cdot 3iy + \color{red}{\left( 3iy \right)^2} = 4-12iy+9i^2y^2\end{aligned} $$ |
② | Combine like terms: $$ 9i^2y^2-12iy+4 = 9i^2y^2-12iy+4 $$ |