Tap the blue circles to see an explanation.
$$ \begin{aligned}(1+i)\cdot(-12+10i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12+10i-12i+10i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10i^2-2i-12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{1+i}\right) $ by each term in $ \left( -12+10i\right) $. $$ \left( \color{blue}{1+i}\right) \cdot \left( -12+10i\right) = -12+10i-12i+10i^2 $$ |
② | Combine like terms: $$ -12+ \color{blue}{10i} \color{blue}{-12i} +10i^2 = 10i^2 \color{blue}{-2i} -12 $$ |