Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{(120pi)^2}{4\cdot(73+i\cdot42.5)}& \xlongequal{ }\frac{(120pi)^2}{4\cdot(73+42i)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14400i^2p^2}{292+168i}\end{aligned} $$ | |
① | $$ \left( 120ip \right)^2 = 120^2i^2p^2 = 14400i^2p^2 $$ |
② | Multiply $ \color{blue}{4} $ by $ \left( 73+42i\right) $ $$ \color{blue}{4} \cdot \left( 73+42i\right) = 292+168i $$ |