Tap the blue circles to see an explanation.
$$ \begin{aligned}(11-7i)\cdot(8-6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}88-66i-56i+42i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}42i^2-122i+88\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{11-7i}\right) $ by each term in $ \left( 8-6i\right) $. $$ \left( \color{blue}{11-7i}\right) \cdot \left( 8-6i\right) = 88-66i-56i+42i^2 $$ |
② | Combine like terms: $$ 88 \color{blue}{-66i} \color{blue}{-56i} +42i^2 = 42i^2 \color{blue}{-122i} +88 $$ |