$$ \begin{aligned}\frac{1-5i}{1}+3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-2i+1\end{aligned} $$ | |
① | Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{1-5i}{1} +3i & \xlongequal{\text{Step 1}} \frac{1-5i}{1} + \frac{3i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{1-5i}{\color{blue}{1}} + \frac{3i}{\color{blue}{1}} = \\[1ex] &=\frac{ 1-5i + 3i }{ \color{blue}{ 1 }}= \frac{-2i+1}{1} \end{aligned} $$ |