Tap the blue circles to see an explanation.
$$ \begin{aligned}(\frac{1}{4}-\frac{3}{4}i)\cdot1i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{1}{4}-\frac{3i}{4})\cdot1i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3i+1}{4}\cdot1i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-3i+1}{4}i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3i^2+i}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{3+i}{4}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot i & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3i }{ 4 } \end{aligned} $$ |
② | To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{1}{4} - \frac{3i}{4} & = \frac{1}{\color{blue}{4}} - \frac{3i}{\color{blue}{4}} =\frac{ 1 - 3i }{ \color{blue}{ 4 }} = \\[1ex] &= \frac{-3i+1}{4} \end{aligned} $$ |
③ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-3i+1}{4} \cdot 1 & \xlongequal{\text{Step 1}} \frac{-3i+1}{4} \cdot \frac{1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -3i+1 \right) \cdot 1 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -3i+1 }{ 4 } \end{aligned} $$ |
④ | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-3i+1}{4} \cdot i & \xlongequal{\text{Step 1}} \frac{-3i+1}{4} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -3i+1 \right) \cdot i }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -3i^2+i }{ 4 } \end{aligned} $$ |
⑤ | $$ -3i^2 = -3 \cdot (-1) = 3 $$ |