Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{0.8}{1+i\cdot0.8\cdot2pi\cdot0.33}}{\frac{0.8}{1+i\cdot0.8\cdot2pi\cdot0.33}+1.2+i\cdot2pi\cdot0.2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{0.8}{1+0i\cdot2pi\cdot0.33}}{\frac{0.8}{1+0i\cdot2pi\cdot0.33}+1.2+2i^2p\cdot0.2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{0.8}{1+0ipi\cdot0.33}}{\frac{0.8}{1+0ipi\cdot0.33}+1.2+2i^2p\cdot0.2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{\frac{0.8}{1+0i^2p\cdot0.33}}{\frac{0.8}{1+0i^2p\cdot0.33}+1.2+2i^2p\cdot0.2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{\frac{0.8}{1+0i^2p}}{\frac{0.8}{1+0i^2p}+1.2+2i^2p\cdot0.2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{\frac{0.8}{1+0i^2p}}{0+1.2+2i^2p\cdot0.2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{\frac{0.8}{1+0i^2p}}{1+0i^2p} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{0}{1+0i^2p} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
① | $$ i \cdot 2 p i = 2 i^{1 + 1} p = 2 i^2 p $$ |
② | $$ 0 i \cdot 2 = 0 i $$ |
③ | $$ 0 i \cdot 2 = 0 i $$ |
④ | $$ i \cdot 2 p i = 2 i^{1 + 1} p = 2 i^2 p $$ |
⑤ | $$ 0 i p i = 0 i^{1 + 1} p = 0 i^2 p $$ |
⑥ | $$ 0 i p i = 0 i^{1 + 1} p = 0 i^2 p $$ |
⑦ | $$ i \cdot 2 p i = 2 i^{1 + 1} p = 2 i^2 p $$ |
⑧ | $$ i \cdot 2 p i = 2 i^{1 + 1} p = 2 i^2 p $$ |
⑨ | $$ i \cdot 2 p i = 2 i^{1 + 1} p = 2 i^2 p $$ |
⑩ | Combine like terms: $$ \color{blue}{0} + \color{blue}{1} = \color{blue}{1} $$ |