Tap the blue circles to see an explanation.
$$ \begin{aligned}(-8+8i)\cdot(-7+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}56-32i-56i+32i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32i^2-88i+56\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-8+8i}\right) $ by each term in $ \left( -7+4i\right) $. $$ \left( \color{blue}{-8+8i}\right) \cdot \left( -7+4i\right) = 56-32i-56i+32i^2 $$ |
② | Combine like terms: $$ 56 \color{blue}{-32i} \color{blue}{-56i} +32i^2 = 32i^2 \color{blue}{-88i} +56 $$ |