Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-6+5i}{3}i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5i^2-6i}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-5-6i}{3}\end{aligned} $$ | |
① | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-6+5i}{3} \cdot i & \xlongequal{\text{Step 1}} \frac{-6+5i}{3} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -6+5i \right) \cdot i }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -6i+5i^2 }{ 3 } = \frac{5i^2-6i}{3} \end{aligned} $$ |
② | $$ 5i^2 = 5 \cdot (-1) = -5 $$ |