Tap the blue circles to see an explanation.
$$ \begin{aligned}(-6i)\cdot2i\cdot(-2-5i)& \xlongequal{ }-12i^2\cdot(-2-5i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12\cdot(-2-5i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-24-60i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-60i-24\end{aligned} $$ | |
① | $$ -12i^2 = -12 \cdot (-1) = 12 $$ |
② | Multiply $ \color{blue}{12} $ by $ \left( -2-5i\right) $ $$ \color{blue}{12} \cdot \left( -2-5i\right) = -24-60i $$ |
③ | Combine like terms: $$ -60i-24 = -60i-24 $$ |