Tap the blue circles to see an explanation.
$$ \begin{aligned}(-6i)(-8i)\cdot(-7+6i)& \xlongequal{ }48i^2\cdot(-7+6i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-48\cdot(-7+6i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}336-288i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-288i+336\end{aligned} $$ | |
① | $$ 48i^2 = 48 \cdot (-1) = -48 $$ |
② | Multiply $ \color{blue}{-48} $ by $ \left( -7+6i\right) $ $$ \color{blue}{-48} \cdot \left( -7+6i\right) = 336-288i $$ |
③ | Combine like terms: $$ -288i+336 = -288i+336 $$ |