Tap the blue circles to see an explanation.
$$ \begin{aligned}(-5+i)\cdot(8-7i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-40+35i+8i-7i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-7i^2+43i-40\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-5+i}\right) $ by each term in $ \left( 8-7i\right) $. $$ \left( \color{blue}{-5+i}\right) \cdot \left( 8-7i\right) = -40+35i+8i-7i^2 $$ |
② | Combine like terms: $$ -40+ \color{blue}{35i} + \color{blue}{8i} -7i^2 = -7i^2+ \color{blue}{43i} -40 $$ |