Tap the blue circles to see an explanation.
$$ \begin{aligned}(-5+3i)\cdot(9-7i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-45+35i+27i-21i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-21i^2+62i-45\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-5+3i}\right) $ by each term in $ \left( 9-7i\right) $. $$ \left( \color{blue}{-5+3i}\right) \cdot \left( 9-7i\right) = -45+35i+27i-21i^2 $$ |
② | Combine like terms: $$ -45+ \color{blue}{35i} + \color{blue}{27i} -21i^2 = -21i^2+ \color{blue}{62i} -45 $$ |