Tap the blue circles to see an explanation.
$$ \begin{aligned}(-4+3i)\cdot(-5+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}20-8i-15i+6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6i^2-23i+20\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-4+3i}\right) $ by each term in $ \left( -5+2i\right) $. $$ \left( \color{blue}{-4+3i}\right) \cdot \left( -5+2i\right) = 20-8i-15i+6i^2 $$ |
② | Combine like terms: $$ 20 \color{blue}{-8i} \color{blue}{-15i} +6i^2 = 6i^2 \color{blue}{-23i} +20 $$ |