Tap the blue circles to see an explanation.
$$ \begin{aligned}(-4+3i)\cdot(-12+6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}48-24i-36i+18i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}18i^2-60i+48\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-4+3i}\right) $ by each term in $ \left( -12+6i\right) $. $$ \left( \color{blue}{-4+3i}\right) \cdot \left( -12+6i\right) = 48-24i-36i+18i^2 $$ |
② | Combine like terms: $$ 48 \color{blue}{-24i} \color{blue}{-36i} +18i^2 = 18i^2 \color{blue}{-60i} +48 $$ |