Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4i)(-4i)\cdot(6+5i)& \xlongequal{ }16i^2\cdot(6+5i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-16\cdot(6+5i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-96-80i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-80i-96\end{aligned} $$ | |
| ① | $$ 16i^2 = 16 \cdot (-1) = -16 $$ |
| ② | Multiply $ \color{blue}{-16} $ by $ \left( 6+5i\right) $ $$ \color{blue}{-16} \cdot \left( 6+5i\right) = -96-80i $$ |
| ③ | Combine like terms: $$ -80i-96 = -80i-96 $$ |