Tap the blue circles to see an explanation.
$$ \begin{aligned}(-4-8i)\cdot(-4+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16-16i+32i-32i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-32i^2+16i+16\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-4-8i}\right) $ by each term in $ \left( -4+4i\right) $. $$ \left( \color{blue}{-4-8i}\right) \cdot \left( -4+4i\right) = 16-16i+32i-32i^2 $$ |
② | Combine like terms: $$ 16 \color{blue}{-16i} + \color{blue}{32i} -32i^2 = -32i^2+ \color{blue}{16i} +16 $$ |