Tap the blue circles to see an explanation.
$$ \begin{aligned}(-3+3i)\cdot(3-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-9+6i+9i-6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2+15i-9\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-3+3i}\right) $ by each term in $ \left( 3-2i\right) $. $$ \left( \color{blue}{-3+3i}\right) \cdot \left( 3-2i\right) = -9+6i+9i-6i^2 $$ |
② | Combine like terms: $$ -9+ \color{blue}{6i} + \color{blue}{9i} -6i^2 = -6i^2+ \color{blue}{15i} -9 $$ |