Tap the blue circles to see an explanation.
$$ \begin{aligned}(-2+2i)\cdot(5+5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-10-10i+10i+10i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }-10 -\cancel{10i}+ \cancel{10i}+10i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10i^2-10\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-2+2i}\right) $ by each term in $ \left( 5+5i\right) $. $$ \left( \color{blue}{-2+2i}\right) \cdot \left( 5+5i\right) = -10 -\cancel{10i}+ \cancel{10i}+10i^2 $$ |
② | Combine like terms: $$ -10 \, \color{blue}{ -\cancel{10i}} \,+ \, \color{blue}{ \cancel{10i}} \,+10i^2 = 10i^2-10 $$ |