Tap the blue circles to see an explanation.
$$ \begin{aligned}(-2-3i)\cdot(-5-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10+4i+15i+6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6i^2+19i+10\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-2-3i}\right) $ by each term in $ \left( -5-2i\right) $. $$ \left( \color{blue}{-2-3i}\right) \cdot \left( -5-2i\right) = 10+4i+15i+6i^2 $$ |
② | Combine like terms: $$ 10+ \color{blue}{4i} + \color{blue}{15i} +6i^2 = 6i^2+ \color{blue}{19i} +10 $$ |