Tap the blue circles to see an explanation.
$$ \begin{aligned}(-1+2i)\cdot(3-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3+2i+6i-4i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4i^2+8i-3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{-1+2i}\right) $ by each term in $ \left( 3-2i\right) $. $$ \left( \color{blue}{-1+2i}\right) \cdot \left( 3-2i\right) = -3+2i+6i-4i^2 $$ |
② | Combine like terms: $$ -3+ \color{blue}{2i} + \color{blue}{6i} -4i^2 = -4i^2+ \color{blue}{8i} -3 $$ |