Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-1.5+isqrt\cdot\frac{3}{2}}{isqrt\cdot3\cdot(-2.5+isqrt\cdot\frac{3}{2})}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-1.5+i\frac{3qrst}{2}}{isqrt\cdot3\cdot(-2.5+i\frac{3qrst}{2})} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-1.5+\frac{3iqrst}{2}}{isqrt\cdot3\cdot(-2.5+\frac{3iqrst}{2})} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{\frac{3iqrst-2}{2}}{isqrt\cdot3\frac{3iqrst-4}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{\frac{3iqrst-2}{2}}{3iqrst\frac{3iqrst-4}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{\frac{3iqrst-2}{2}}{\frac{9i^2q^2r^2s^2t^2-12iqrst}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{3iqrst-2}{9i^2q^2r^2s^2t^2-12iqrst}\end{aligned} $$ | |
① | Step 1: Write $ qrst $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} qrst \cdot \frac{3}{2} & \xlongequal{\text{Step 1}} \frac{qrst}{\color{red}{1}} \cdot \frac{3}{2} \xlongequal{\text{Step 2}} \frac{ qrst \cdot 3 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3qrst }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ qrst $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} qrst \cdot \frac{3}{2} & \xlongequal{\text{Step 1}} \frac{qrst}{\color{red}{1}} \cdot \frac{3}{2} \xlongequal{\text{Step 2}} \frac{ qrst \cdot 3 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3qrst }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} i \cdot \frac{3qrst}{2} & \xlongequal{\text{Step 1}} \frac{i}{\color{red}{1}} \cdot \frac{3qrst}{2} \xlongequal{\text{Step 2}} \frac{ i \cdot 3qrst }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3iqrst }{ 2 } \end{aligned} $$ |
④ | Step 1: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} i \cdot \frac{3qrst}{2} & \xlongequal{\text{Step 1}} \frac{i}{\color{red}{1}} \cdot \frac{3qrst}{2} \xlongequal{\text{Step 2}} \frac{ i \cdot 3qrst }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3iqrst }{ 2 } \end{aligned} $$ |
⑤ | Step 1: Write $ -1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Write $ -2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑦ | Step 1: Write $ -1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑧ | Step 1: Write $ -1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑨ | Step 1: Write $ 3iqrst $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3iqrst \cdot \frac{3iqrst-4}{2} & \xlongequal{\text{Step 1}} \frac{3iqrst}{\color{red}{1}} \cdot \frac{3iqrst-4}{2} \xlongequal{\text{Step 2}} \frac{ 3iqrst \cdot \left( 3iqrst-4 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9i^2q^2r^2s^2t^2-12iqrst }{ 2 } \end{aligned} $$ |
⑩ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ 2 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{3iqrst-2}{2} }{ \frac{\color{blue}{9i^2q^2r^2s^2t^2-12iqrst}}{\color{blue}{2}} } & \xlongequal{\text{Step 1}} \frac{3iqrst-2}{2} \cdot \frac{\color{blue}{2}}{\color{blue}{9i^2q^2r^2s^2t^2-12iqrst}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{3iqrst-2}{\color{red}{1}} \cdot \frac{\color{red}{1}}{9i^2q^2r^2s^2t^2-12iqrst} \xlongequal{\text{Step 3}} \frac{ \left( 3iqrst-2 \right) \cdot 1 }{ 1 \cdot \left( 9i^2q^2r^2s^2t^2-12iqrst \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 3iqrst-2 }{ 9i^2q^2r^2s^2t^2-12iqrst } \end{aligned} $$ |