Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{(z-2)\cdot(1-i)}{z+2}-i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{z-iz-2+2i}{z+2}-i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-2iz+z-2}{z+2}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{z-2}\right) $ by each term in $ \left( 1-i\right) $. $$ \left( \color{blue}{z-2}\right) \cdot \left( 1-i\right) = z-iz-2+2i $$ |
② | Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |